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ABSTRACT

Tracking of cell populations in vitro in time lapse mi-
croscopy images enables automatic high throughput spa-
tiotemporal measurements of a range of cell cycle mechanics
and dynamics. Both in clinical and academic environments,
large scale cellular data analysis using such methods stands
to facilitate a paradigm shift in approaches to understanding
cell biology. In this paper, we present a novel approach to
cell population tracking and segmentation. We employ the
CONDENSATION algorithm in tandemwith Fast Levels Sets
and Exclusion Zones for robust tracking and pixel-accurate
segmentation. The algorithm feeds its output to a lineage fil-
ter. The complete approach is validated in terms of its ability
to track and identify nuclei, and by its success in detecting
abnormalities in the length of mitosis.

Index Terms— Spatiotemporal, Bayesian, Cells, Analy-
sis.

1. INTRODUCTION
Automatic cell tracking and segmentation are a pre-requisite
to automatic cell analysis in image sequences. Manual meth-
ods can never sustainably analyse the volume of data required
by high-throughput methods. Commercially available mi-
croscopy image processing systems mainly employ simple
algorithms, such as thresholding techniques that are too sim-
plistic to provide robust tracking. Hence, we are interested
in more sophisticated approaches based on a knowledge of
the imaging process and the underlying biological mecha-
nisms. Our work is motivated by cell biology and a need
to measure cell cycle parameters. For instance, the spindle
assembly checkpoint (SAC) is a component of the cell cycle
that prevents a cell from physically dividing its nuclear mate-
rial until all chromosomes are in a position such that they will
faithfully divide. Mutations in SAC are frequent in all can-
cers. If SAC is inactive, the cell will proceed through mitosis
more quickly than usual. With SAC active, problems with the
correct assembly of cell division components will maintain
an active checkpoint, and mitosis will continue to persist.
Eventually, usually within 24 hours, the cell will undergo
programmed cell death or apoptosis without any detriment to

the surrounding cells. SAC is therefore an obvious target for
drug treatment to arrest cancerous cell development. In this
paper we consider the intensity profile of a nucleus through
the cell cycle (Fig.1) as a means to derive the length of mitosis
automatically, and therefore detect abnormal cells.
Automatic microscopy analysis is an emerging area of

biomedical image analysis. For instance, Li et al.[1] describe
a track-linking based approach to spatiotemporal tracking and
lineage construction in cells. The approach compares the out-
puts of a level set segmentation and an intensity histogram
based segmentation to identify candidate cells in an individ-
ual image. These are then connected between frames using an
Interacting Multiple Model (IMM) filter. Tracking accuracies
between 83.8% and 92.5% are reported on MG-63 osteosar-
coma (cancer) cells over 10 hours and on aminon epithelial
(AE) stem cells over 42.5 hours. Chen et al.[2] employ a
nuclei-fragmentmerging technique based on prior knowledge
of nuclei shape and size to reduce over-segmentation in nu-
clei. A K-nearest neighbour classifier is used to determine cell
phase. Tracking accuracies of 89.3% to 94.3% are reported
over 96 frames over 24 hours. Our approach differs from the
above in the use of a hybrid CONDENSATION/Level Sets al-
gorithm and embedding knowledge of biological mechanism
models and image formation in the solution.

2. UNDERSTANDING THE IMAGES

Histone GFP Telomerase HeLa cells are an immortal cell line
bred specifically for use in cancer research [3]. Histones are
protein compounds that form a part of the chromosomes, and
as such in histone GFP HeLa cells visualisation of the nucleus
throughout the cell cycle is possible. Although now heavily
mutated from their origins as human cells, for imaging pur-
poses HeLa cells provide an accurate model. Moreover, the
availability of HeLa cell lines stably expressing fluorescently
tagged cellular proteins allows specific processes within the
cell to be monitored. Histones are essential, evolutionarily
conserved proteins that bind to DNA, forming chromosomes,
and as such, histone GFP HeLa cells allow the visualisation
of the nucleus throughout the cell cycle.
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Fig. 1. (a) Intensity profile for a typical nucleus undergoing
mitosis. (b) The corresponding confocal microscope images.

Intensity profile. Images of a typical HeLa cell and its as-
sociated intensity profile for one mitotic division can be seen
in Fig.1. For the majority of the cell cycle, the cell replicates
DNA and slowly increases in size as it prepares to undergo
mitosis and be divided in two (image 1 and 5). During this
period, although the observed size of the nucleus increases,
the density of the chromosomes and therefore the observed
average intensity of the nucleus remains approximately con-
stant.
Throughout mitosis (between A and B in Fig.1(a)), the

chromosomes condense, and so the concentration of GFP in-
creases resulting in a pronounced increase in intensity. Initial
condensation is rapid, with clearly observable changes hap-
pening within the order of five minutes of the onset of mitosis
(shown between A and 2). Intensity peaks just before the
physical separation of nuclear material, known as Anaphase
(3). During Anaphase itself (4) there is a pronounced reduc-
tion in intensity followed by a fade to a stable non-mitotic
intensity (5) over the period of approximately thirty minutes.
Mitosis usually lasts about an hour.

Morphological profile. Outside of mitosis, the cell and nu-
cleus slowly increase in volume in preparation for division.
The nucleus appears as an approximate circle which gradually
increases in area. In contrast, the events of mitosis are more
pronounced, key events in mitosis are shown in Fig.1. As the
cell prepares to divide, condensed chromosomes are aligned
along an axis, they appear as a bright ellipse on microscope
images. At Anaphase, the chromosomes are pulled apart and
so the ellipse splits along its major axis. The divided chro-
mosomes then decondense as they form part of the nucleus of
their new cell. The bright ellipses fade as they adopt a more

circular shape. If we can find A and B we can automatically
derive the length of mitosis.

3. ALGORITHM

The new algorithm is outlined in Fig.2, with the key tracking
steps highlighted.

3.1. Local adaptive thresholding

We employ Local Adaptive Thresholding (LAT) [4] to mit-
igate the effect of regional variations in intensity caused by
nuclei at varying focal planes. LAT calculates an individual
threshold value for a pixel based on the intensity profile of a
window around the pixel. LAT requires a single parameter
based on a global threshold value. The Otsu algorithm [5],
based on a two Gaussian intensity profile was found to pro-
vide a good global threshold. Images are also median filtered
to remove the resulting binarised small unconnected pixels.

Fig. 2. Algorithm overview

3.2. CONDENSATION Tracking

Cell tracking is achieved using a variant of the CONDEN-
SATION algorithm [6]. The algorithm is based on random
sampling, where the chance of selecting a particular sample
is proportional to how well the sample’s observed data fits a
model of the object being searched for.
We model the shape of a nucleus throughout the cell cycle

as an ellipse (section 2). The major/minor axes of the model
are bounded by the minimum/maximum size of a nucleus at
any point in the cell cycle. The orientation can take any value.
A sample’s position, size and orientation are initially cho-

sen from a uniform distribution. Observation measurements
are taken by edge detectors, evenly spaced along the length of
the ellipse. Each of these searches for edges in the thresholded
image, and returns a score based on the location of a detected
edge. A sample’s score of how well its observed data fits the
model is the sum of these values.
Accordingly, samples located on the image at a nucleus

and with the appropriate size and orientationwill score highly.
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Samples away from nuclei will return a low score. A sample’s
chances of being selected for the next frame are directly pro-
portional to the score in the current frame.
To predict movement between frames, a selected sample’s

position, orientation and size are adjusted in accordance with
an expected movement model, based on a Gaussian distribu-
tion.
Outside of mitosis, HeLa cells move very little, and the

movement model can be assumed Gaussian with a small σ.
More dramatic movement occurs during mitosis when the nu-
cleus changes its morphology and divides. During this period,
a larger σ is required to follow the exaggerated movement.
The transition point between these two states is detected from
the change in the intensity of the nucleus.

Fig. 3. Stages of image processing on an individual nucleus
for a single frame. 1. Original image. 2. Adaptive thresh-
olded. 3. Median filtered. 4. Condensation tracking accord-
ing to posterior likelihood sampling. 5. The top scoring sam-
ple’s spline. 6. The top scoring sample is used to initialise a
Fast Level Set to segment the nucleus. Lineage construction
uniquely identifies the nucleus between frames.

3.3. Exclusion Zones and redistribution
With a completed iteration of CONDENSATION, we have an
image with a high concentration of samples over the best fit-
ting objects. To force all objects to be detected, we record
high scoring areas and then redistribute non-local maxima
score samples from these areas to other parts of the image.
The highest scoring sample in the image is selected, and used
to seed a Fast Level Sets segmentation. All the other sam-
ples that reside within the segmented region are removed and
added to a list for redistribution. A proportion, γ, of the com-
bined score of the removed samples is added to that of the
remaining sample. In this way we minimise the effect on the
probability density for the next image. For the redistribution
of removed samples, the weight for the top scoring sample
is set to zero, and as such the Exclusion Zone is established.

This process is repeated for the next remaining highest scor-
ing sample and so on. The result is an image with a number
of nuclei indicated by one sample, a probability density with
corresponding regions set to zero and a list of unused samples
ready for redistribution.
Redistribution of samples can happen in two ways - re-

sampling and uniform redistribution. The latter is uniformly
randomly positioning the samples, as on the first initialisa-
tion image. This mechanism allows for the identification of
newly appeared nuclei or of any nuclei previously lost. The
former, resampling, involves sampling from the sample set
from the previous image. With Exclusion Zones established,
this forces the algorithm to select samples with a relatively
smaller likelihood, which have now become more dominat-
ing. This mechanism ensures the algorithm keeps track of
all nuclei, without cost to the weight or number of samples
apportioned to the best fitting samples. A quality threshold
prevents noise elements being tracked.

3.4. Fast level sets

Fast Levels Sets [7] is used to produce an accurate segmen-
tation of a nucleus from a single starting point inside the nu-
cleus image. An example of such a segmentation can be seen
in Fig.3. The segmentation represents the entire and accurate
region which an individual sample represents. It is this region
which forms an Exclusion Zone to allow multiple nuclei to be
tracked, and is used for subsequent analysis.

3.5. Lineage construction

CONDENSATION is a generational algorithm that allows the
construction of a temporal model of cell behaviour (lineage).
The child of a sample on frame n seeks the same nucleus
on frame n + 1 and similarly, the grandchildren will seek
the same nucleus on from n + 2. Lineage information is
passed between frames innately by the algorithm. Occasion-
ally, however, nuclei may partially or totally occlude one an-
other or may move in and out of the viewing area. This
presents difficulties for the preservation of lineage as when
two groups of samples operate in the same area one group
will be removed by an Exclusion Zone. If the objects sub-
sequently move out of occlusion, their lineage information is
lost. To account for these situations, the method of Li et al.
[1] is used to connect lost tracks.

3.6. Cellular analysis

For individual nuclei, identifying the length of mitosis equates
to finding the period between A and B on Fig.1(a). This re-
gion is detected by local intensity gradient analysis. The σ

for cells undergoing normal mitosis is very small. We iden-
tify abnormalmitotic events as those that differ from themean
by more than 3σ.
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4. RESULTS

Datasets. We analysed the performance of the approach on
four image sequences of histone-2B-GFP HeLa cells taken
on a Deltavision RT laser scanning microscope using a 40x
objective. All images were taken at a temporal resolution of
one minute, with three image sets collected over 200 minutes
and one over 150 minutes. The images were recorded at a
spatial resolution of 896 x 896 pixels.
Parameter values. The approach has parameter values asso-
ciated with the ellipse based model of a nucleus and its pre-
dicted movement, with the function of the CONDENSATION
algorithm, and with the function of the Fast Level Sets algo-
rithm. The parameter values were determined by experimen-
tation for best performance in each case.
The length of an ellipse minor axis was bounded between

10 and 40 pixels and the major axis between 30 and 40 pixels.
Initialisation prior mean and σ values were 35 and 1 pixels
for the major axis and 35 and 5 pixels for the minor axis re-
spectively. For rotation the prior mean value was π from the
vertical with a σ of π

2
. For the movement prediction model,

the σ for position, rotation minor and major axes were 6.5
pixels, π

15
, 1 pixels and 0.1 pixels respectively. There were

500 samples in the CONDENSATION sample set. The LAT
window size was square and set to 100 x 100 pixels. The
Exclusion Zone γ value was 0.5.
Validation. The tracking program was set to label individual
nuclei with a unique number on every frame in each image se-
quence. A human operatormanually tracked each nucleus and
checked the identifier on every frame. Tracking of a nucleus
was only considered valid if the same nucleus was tracked
throughout the entire period it was visible on the image se-
quence. Intensity profiles for cells that went through nuclear
division were manually checked for entry and exit points into
mitosis. Table 1 summarizes the results.

Table 1. Tracking accuracy results
Sequence Lineage validity Occluded nuclei removed
A 26/28 (92.9%) 26/27 (96.3%)
B 32/35 (91.4%) 32/32 (100.0%)
C 32/38 (84.2%) 32/33 (96.9%)
D 34/39 (87.2%) 34/34 (100.0%)
All 124/140 (88.6%) 124/126 (98.4%)

The vast majority of lineage tracking failure occurred
when a nucleus became totally or partially occluded for a
sustained period - longer than 4 frames. This would cause
all lineage information to be lost for the occluded nucleus.
98.4% of nuclei were tracked accurately in the absence of
extended occlusion.
Table 2 summarises the investigation on mitosis length es-

timation. 22 normal and 3 abnormal mitotic events were iden-
tified. The distribution of results for normal nuclei showed a
small σ of 2.39 minutes. Abnormal events were identified as
lying outside 3σ.

Table 2. Mitosis lengths
Seq. Normal Avg. len. Abnormal Len.

events (Mins.) events (Mins.)
A 5 53.8 0
B 10 58.2 1 85*
C 4 56.5 1 116
D 3 55.0 1 94*
All 22 56.5 (σ = 2.39) 3

* nuclei were still in mitosis at the end of the image sequence

5. CONCLUSIONS AND FURTHERWORK

We have developed and validated a new algorithm for track-
ing and tracing the lineage of dense populations of nuclei in
confocal microscope images of HeLa cells. The combination
of lineage information and pixel accurate nuclei segmenta-
tions were used to automatically identify abnormalities in the
length of the cell cycle. Our results match the best claimed
tracking performance in the field [1, 2], though differences in
the nature of images used for testing make direct comparison
difficult. Future work includes further development of the al-
gorithm to handle extended occlusion, measurement of other
key cell parameters, and deployment of the method for large
scale cell characterisation studies.

We are indebted to Jennifer Winter and the McAinsh Lab-
oratory at the Mari Curi Research Institute for their generous
provision of the images used in this research.
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